Structural-functional features of landscapes with active thermocarst in the northern taiga of Western Siberia

A. G. Lim, S. V. Loiko, I. V. Kritckov, D. M. Kuzmina


In the article, the main results of the study of dissolved greenhouse gases (CO2, CH4), dissolved organic carbon (DOC) and colloidal trace elements-metals in surface and soil waters of hollows, depressions, permafrost subsidences are considered. These waters were sampled in areas with active and stable permafrost thawing in Western Siberia. It is found that these zones of active termokarst are mainly located on the slopes and the bottoms of the upper reaches of rivers, which drain the interfluve. Active thawing of flat mound bogs leads to the appearance of numerous hollows, depressions and thermokarst subsidences, especially on the border between forest and fens. This is related to the additional heat input from the flowing water and causing the thawing deep permafrost on the edges of ridges occupied by the forest. Increase in specific conductivity (S.C.) in the smallest water bodies and supra-permafrost water is accompanied by a significant increase in concentrations of DOC, P, K, Cu, Zn, Mo and Ba. It has been found that small hollows and subsidence (< 10 – 100 м²) are characterized by much higher concentrations of DOC and CO2 (p < 0.05) in comparison with large depressions and thermokarst water bodies. There is also a decrease of CH4 concentration with an increase in the size of water bodies (p < 0.05), despite the fact that the data dispersion reaches 3 orders in small (<100 – 300 m²) water bodies of the where located zones active termokarst landscape, concentrations of DOC, CO2 and CH4 are significantly higher (p <0.05) than in the previously studied water bodies formed under conditions of a stable state of permafrost in areas of Nojabrsk and Khanymey. Waters of the active thawed of permafrost peat landscapes are usually rich in oxygen (saturation in the range of 30 ≤ O2 ≤ 105 %) and approximately 0.5 unit’s pH more acidic than areas with a stable state of permafrost. Many major and trace elements show a statistically significant decrease in concentration from very small water bodies (< 10 m²) to larger thermokarst waters. By the results of carried out research we can say that in the landscapes with active termokarst there will be direct mobilization of soil water in the hydrological network (rivers and lakes) with a minimal transformation of the water composition within the catchment area.


Western Siberia; permafrost; permafrost thaw; carbon; soils; greenhouse gases; dissolved organic carbon

Full Text:



Bagard, M. L., Chabaux, F., Pokrovsky, O. S., Viers, J., Prokushkin, A. S., Stille, P., ... & Dupré, B. (2011). Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochimica et Cosmochimica Acta, 75(12), 3335-3357. DOI: 10.1016/j.gca.2011.03.024.

Bagard, M. L., Schmitt, A. D., Chabaux, F., Pokrovsky, O. S., Viers, J., Stille, P., ... & Prokushkin, A. S. (2013). Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia. Geochimica et Cosmochimica Acta 114, 169-187. DOI: 10.1016/j.gca.2013.03.038.

Chikharev, V. A. (2012). Morfologo-dinamicheskaya struktura tipa mestnosti zatorfovannykh dolinoobraznykh ponizheniy. Vestnik Tyumenskogo gosudarstvennogo universiteta. Sotsial'no-ekonomicheskiye i pravovyye issledovaniya, (7) (in Russian).

Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic change, 81, 7-30. DOI: 10.1007/s10584-006-9210-7.

Drake, T. W., Wickland, K. P., Spencer, R. G., McKnight, D. M., & Striegl, R. G. (2015). Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences, 112(45), 13946-13951.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., ... & Bala, G. (2006). Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of climate, 19(14), 3337-3353. DOI: 10.1175/JCLI3800.1.

IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Kaverin, D. A., Pastukhov, A. V., Kakunov, N. B., & Kalmykov, A. V. (2014). Osobennosti formirovaniya pochv v kotlovine osushennogo ozera “Opytnoye” (Yevropeyskiy severo-vostok Rossii). Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 16(5) (in Russian).

Keller, K., Blum, J. D., & Kling, G. W. (2010). Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chemical Geology, 273(1), 76-81. DOI: 10.1016/j.chemgeo.2010.02.013.

Keller, K., Blum, J. D., & Kling, G. W. (2010). Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chemical Geology, 273(1). DOI: 10.1016/j.chemgeo.2010.02.013.

Kirpotin, S. N., Berezin, A., Bazanov, V., Polishchuk, Y., Vorobiov, S., Mironycheva‐Tokoreva, N., ... & Kouraev, A. (2009). Western Siberia wetlands as indicator and regulator of climate change on the global scale. International Journal of Environmental Studies, 66(4), 409-421. DOI: 10.1080/00207230902753056.

Kirpotin, S., Polishchuk, Y., Bryksina, N., Sugaipova, A., Kouraev, A., Zakharova, E., ... & Dupre, B. (2011). West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle. International journal of environmental studies, 68(5), 603-623. DOI: 10.1080/00207233.2011.593901.

Manasypov, R. M., Vorobyev, S. N., Loiko, S. V., Kritzkov, I. V., Shirokova, L. S., Shevchenko, V. P., & Sinkinov, V. V. (2015). Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences, 12(10), 3009. DOI: 10.5194/bg-12-3009-2015.

Neubauer, E., Köhler, S. J., von der Kammer, F., Laudon, H., & Hofmann, T. (2013). Effect of pH and stream order on iron and arsenic speciation in boreal catchments. Environmental science & technology, 47(13), 7120-7128. DOI: 10.1021/es401193j.

Neubauer, E., Von Der Kammer, F., Knorr, K. H., Peiffer, S., Reichert, M., & Hofmann, T. (2013). Colloid-associated export of arsenic in stream water during stormflow events. Chemical Geology, 352, 81-91. DOI: 10.1016/j.chemgeo.2013.05.017.

Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Kulizhsky, S. P., & Vorobiev, S. N. (2013). Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences, 10 (8), 5349-5365. DOI: 10.5194/bg-10-5349-2013.

Raudina, T. V., Loiko, S. V., Lim, A. G., Krickov, I. V., Shirokova, L. S., Istigechev, G. I., ... & Pokrovsky, O. S. (2017). Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences, 14(14), 3561.

Raudina, T. V., Loyko, S. V., Kritskov, I. V., & Lim, A. G. (2016). Sravneniye sostava pochvennykh vod merzlykh bolot Zapadnoy Sibiri, poluchennykh razlichnymi metodami. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 3(35), (in Russian).

Romanovsky, V. E., Smith, S. L., & Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost and Periglacial processes, 21(2), 106-116. DOI: 10.1002/ppp.689.

Shirokova, L. S., Pokrovsky, O. S., Kirpotin, S. N., Desmukh, C., Pokrovsky, B. G., Audry, S., & Viers, J. (2013). Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry, 113(1-3), 573-593. DOI: 10.1007/s10533-012-9790-4.

Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629-1633. DOI: 10.1126/science.1094875.

Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., & Gu, B. (2016). Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 95. DOI: 202-211. 10.1016/j.soilbio.2015.12.022.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138