Diversity and phytoindication ability of plant community

O. V. Zhukov, O. M. Kunah, Y. Y. Dubinina, D. S. Ganzha

Abstract


The role of β-diversity of plant communities as a factor in its phytoindication significance has been revealed. We studied the continuously flooded semi-light elm-oakery with blackberry De'' 2-3 in the river Dnipro floodplain within the nature reserve of "Dnipro-Orelsky". Plant community relates to suballiance Ulmenion minoris Oberdorfer 1953 union Alnion incanae Pawlowski 1928 Null-order alfa diversity is 8.74 (95% confidence interval 8,62–8,91). Null-order beta-diversity is at the level of 6,86 (6,44-7,17), and gamma diversity is at the level of 60 (56,01–63,01). Environmental factors identified using phytoindication approach have been found to be correlated with each other, resulting in the formation of their regular complexes. The complex nature of the aggregate environmental factors that describes a multidimensional factor-1, can be identified as the result of forest pertinentia (according Visotsky). Less important multidimensional factors in their mathematical properties are close to ordinary phytoindicator factors. Structuring of β-diversity indicates that the plant species differ in their informational value to indicate a variety of environmental factors. Established plants clusters represent a plurality of kinds, characterized by the highest information value to indicate certain factors. Indicator ability of the vegetation to display the action of environmental factors spatially heterogeneous. In condition when the neutral or random factors prevail over phytoindicator useful information, there is disinformation on the relevant factors. The disinformation zones established for all multi-dimensional factors and they have a specific spatial location.


Keywords


diversity; phytoindication; ecomorphes; information value of the indicator; the spatial variation

Full Text:

PDF

References


Adler, P. B., Hillerislambers, J., Levine, J. M. (2007). A niche for neutrality. Ecology Letters, 10, 95–104.

Allen, T.F.H., Sadowsky, D.A., Woodhead, N. (1984). Data transformation as a scaling operation in ordination of plankton. Vegetatio, 56, 147–160.

Axmanová, I., Tichý, L., Fajmonová, Z., Hájková, P., Hettenbergerová, E., Li, C. F., Merunková, K., Najzchlebová, M., Otýpková, Z., Vymazalová, M., Zelený, D. (2012). Estimation of herbaceous biomass from species composition and cover. Appl Veg Sci, 15(4), 580–589.

Balkovič, J., Kollár, J., & Šimonovič, V. (2012). Experience with using Ellenberg’s R indicator values in Slovakia: Oligotrophic and mesotrophic submontane broad–leaved forests. Biologia, 67(3), 474–482.

Belgard, A.L. (1950). Forest vegetation of South–Eeast part of the USSR. Kiev: Kiev State University (in Russian).

Belgard, A.L. (1971). Steppe Forestry. Moscow: Forest Industry (in Russian).

Bennie, J., Hill, M.O., Baxter, R., Huntley, B. (2006). Influence of slope and aspect on long–term vegetation change in British chalk grasslands. J. Ecol., 94, 355–368.

Bergès, L., Gégout, J. C., & Franc, A. (2006). Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann For Sci, 63(1), 31–42.

Brunet, J., von Oheimb, G., & Diekmann, M. (2000). Factors influencing vegetation gradients across ancient–recent woodland borderlines in southern Sweden. J Veg Sci, 11, 515–524.

Chytrý, M. (1995). Are species with similar ranges confined to similar habitats in a landscape. Preslia, 67, 25–40.

Chytrý, M., Hejcman, M., Hennekens, S. M., & Schellberg, J. (2009). Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland

Experiment, Germany. Appl Veg Sci, 12(2), 167–176.

Clark, J. S. (2012). The coherence problem with the unified neutral theory of biodiversity. Trends in Ecology and Evolution, 27, 199–203.

Cornwell, W. K., & Grubb, P. J. (2003). Regional and local patterns in plant species richness with respect to resource availability. Oikos, 100(3), 417–428

De'ath, G. (2012). The multinomial diversity model: Linking shannon diversity to multiple predictors. Ecology, 323, 116–119.

Decocq, G., Aubert, M., Dupont, F., Alard, D., Saguez, R., Wattez–Franger, A., de Foucault, B., Delelis–Dusollier, A., Bardat, J. (2004). Plant diversity in a managed temperate deciduous forests: understorey response to two silvicultural systems. J. Appl. Ecol., 41, 1065–1079.

Diduh, Y. P. (2012). The principles of the bioindication. Kyiv: Naukova dumka (in Ukranian).

Diduh, Ya. P., Emshanov, D.G., Schkolnikov, Y.A. (1997). The useage of the phytoindication estimations in the study of the forest ecosystem structure. Ecology, 5, 353–360.

Didukh, Ya.P., Kuzemko, А.A. (2014). Phytoindication assessment of syntaxa, class Molinio–Arrhenatheretea, in Polissya and forest steppe zones of Ukraine. Ukr. Bot. J., 71(2), 140–147.

Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol, 4(6), 493–506.

Diekmann, M., (1995). Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreonemoral zone in Sweden. Ecography, 18 (2), 178–189.

Diekmann, M., Falkengren–Grerup, U. (1998). A new species index for forest vascular plants: development of functional indices based on mineralization rates of various forms of soil nitrogen. J. Ecol., 86, 269–283.

Drake, J.A. (1990). Communities as assembled structures: do rules govern pattern? TREE, 5, 159–164.

Dupré, C., Diekmann, M. (1998). Prediction of occurrence of vascular plants in deciduous forests of South Sweden by means of Ellenberg indicator values. Applied Vegetation Science, 1(1), 139–150

Dvořáková, J., Horsák, M. (2012). Variation of Snail Assemblages in Hay Meadows: Disentangling the Predictive Power of Abiotic Environment and Vegetation. Malacologia, 55(1), 151–162.

Dzwonko, Z. (2001). Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J Appl Ecol, 38(5), 942–951.

Ejrnæs, R., Hansen, D.N., Aude, E. (2003). Changing course of secondary succession in abandoned sandy fields. Biol. Cons., 109, 343–350.

Ellwood, M.D., Manica, F.A., Foster, W.A. (2009). Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12, 277–284.

Emshanov, D.G. (1999). The methods of spatial ecology in the study of forest ecosystems. Ed. D. M. Grodzinsky. Kiev, Mercury Globe's Ukraine, 219 p.

Erdős L. (2013). Species compositional similarity. J Veg Sci, 21(1), 88–95.

Ewald, J. (2003a). The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl Ecol, 4(6), 507–513.

Ewald, J. (2003b). The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobot, 38(4), 357–366.

Fukami, T., Dickie, I.A., Wilkie, P., Paulus, B.C., Park, D., Roberts, A., Buchanan, P.K., Allen, R.B. (2010). Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters, 13, 675–684.

Gégout, J. C., & Eva, K. (2003). Comparison of indicator values of forest understory plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). Forest Ecol Manage, 182(1), 1–11.

Godefroid, S., Dana, E. D. (2007). Can Ellenberg’s indicator values for Mediterranean plants be used outside their region of definition? Journal of Biogeography, 34, 62–68

Golub, V.B., Kuzmina, E.G. (1997). Тhe communities of cl. Querco-Fagetea Br.-Bl. et Vlieger in Vlieger 1937 of the lower Volga valley. Berlin: Feddes Repertorium, 3–4 (108), 205–218.

Goncharenko, I.V., Senchylo, O.O., Didukh, Ya.P. (2013). A method of quantitative evaluation of plant communities by their phytosociological spectra. Chornomors’k. bot. z., 9 (4), 485–496.

Hájková, P., Hájek, M., Apostolova, I., Zelený, D., & Dítě, D. (2008). Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. J Biogeogr, 35(2), 282–294.

Häring, T., Reger, B., Ewald, J., Hothorn, T., & Schröder, B. (2013). Predicting Ellenberg's soil moisture indicator value in the Bavarian Alps using additive georegression. Appl Veg Sci, 16(1), 110–121.

Hédl, R. (2004). Vegetation of beech forests in the Rychlebské Mountains, Czech Republic, reinspected after 60 years with assessment of environmental changes. Pl. Ecol., 170, 243–265.

Hill, M.O., Carey, P.D. (1995). Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8 (4), 579–586.

Hill, M.O., Roy, D.B., Mountford, J.O., Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.

Horsák, M., Hájek, M., Tichý, L., Juřičková, L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica, 32(2), 161–171.

Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA.

Hutchinson, G. E. (1965). The niche: an abstractly inhabited hypervolume. The ecological theatre and the evolutionary play. New Haven, Yale Univ. Press.

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427–2439.

Kelly, V., Canham, C.D. (1992). Resource heterogeneity in old fields. J. Veg. Sci., 3, 545–552.

Latour, J.B., Reiling, R., Slooff, W. (1994). Ecological standards for eutrophication and desiccation: perspectives for a risk assessment. Water Air Soil Pollut., 78, 265–277.

Lawton, J. (1999). Are there general laws in ecology? Oikos, 84, 177–192.

Lososová, Z., Chytrý, M., Cimalová, Š., Kropáč, Z., Otýpková, Z., Pyšek, P., Tichý, L. (2004). Weed vegetation of arable land in the Czech Republic and Slovakia: gradients of diversity and species composition. J. Veg. Sci., 15, 415–422.

Manyuk, V. (2001). By spreading and typology of the middle flooded oak forest within Dnipro–Orilsky reserve and adjacent areas of the river Dnipro valley. Bulletin of Dnipropetrovsk University. Biology. Ecology, 1(9), 147–152 (in Ukranian).

Manyuk, V. (2005). Structure, typology, dynamics and restoring oak Dnyprovsko–Orylsky Nature Reserve: Dis. candidate. Biol. Sciences: 03.00.16. Dnipropetrovsk.

Manyuk, V.V. (1998). Ecological and floristic features of the Dniproo–Orelsky natural reserve oak forests. Questions of the steppe forest and forest land reclamation, 139–146.

Matveev, N.M. (2011). Professor A. L. Belgard’s fundamentals of Forest Steppe science and their modern interpretation. Samara: Samara University.

Merunková, K., & Chytrý, M. (2012). Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol, 213(4), 591–602.

Möller, H. (1997). Reactions– und Stickstoffzahlen nach Ellenberg als Indikatoren für die Humusform in terrestrischen Waldökosystemen im Raum Hannover. Tuexenia, 17, 349–365.

Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., (…) & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19 (Suppl. 1), 3–264.

Økland, R.H. (1999). On the variation explained by ordination and constrained ordination axes. J. Veg. Sci., 10 (1), 131–136.

Økland, R.H., Eilertsen, O., Økland, T. (1990). On the relationship between sample plot size and beta diversity in boreal coniferous forest. Vegetatio, 87, 187–192.

Otýpková, Z. (2009). The influence of sample plot size on evaluations with Ellenberg indicator values. Biologia, 64(6), 1123–1128.

Otýpková, Z., Chytrý, M. (2006a). Effect of plot size on the ordination of vegetation samples. J. Veg. Sci., 17, 465–472.

Otýpková, Z., Chytrý, M. (2006b). Effects of plot size and heterogeneity of vegetation data sets on assessment of evenness and β–diversity. Ms. (Ph.D. thesis, Depon. in: Dept. Bot. Zool., MU, Brno).

Pakeman, R. J., Reid, C. L., Lennon, J. J., & Kent, M. (2008). Possible interactions between environmental factors in determining species optima. J Veg Sci, 19(2), 201–208.

Persson, S. (1981). Ecological indicator values as an aid in the interpretation of ordination diagrams. J Ecol, 69, 71–84.

Raunkier, C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon Press.

Robertson, G.P., Hutson, M.A., Evans, F.C., Tiedje, J.M. (1988). Spatial variability in a successional plant community: Patterns of nitrogen availability. Ecology, 69, 1517–1524.

Rysin, L.P., Comissarov, E.S., Maslov, A.A. (1988). Methodological proposal to create a system of permanent sample plots in protected forest areas. Moscow. Progress. 28.

Schaffers, A. P., & Sýkora, K. V. (2000). Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci, 11(2), 225–244.

Schenková, V., Horsák, M., Plesková, Z., Pawlikowski, P. (2012). Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. Journal of Molluscan Studies, 78, 105–111.

Smart, S.M., Scott, W.A., Whitaker, J., Hill, M.O., Roy, D.B., Critchley, C.N., Marini, L., Evans, C., Emmet, B.A., Rowe, E.C., Crowe, A., Le Duc, M., Marrs, R.H. (2010). Empirical realised niche models for British higher and lower plants–development and preliminary testing. J. Veg. Sci. 21 (4), 643–656.

Smirnova, O.V., Chistyakov, A.A., Popadyuk, R.V., Evstigneev, O.I., Korotkov, V.N., Mitrofanov, M.V., Ponomarenko, E.V. (1992). Population organization vegetation forest areas (for example, broad-leaved forests of the European part of the USSR).

Pushchino, ONTI Scientific Center of Biological Research USSR. 92.

Solomakha, I. (2015). Forest and shrubs syntaxonomy of the Northern Black Sea coast. Scientific Bulletin of Chernivtsi University. Biology (Biological Systems), 7 (2), 236–243.

Szymura, T. H., Szymura, M., & Macioł, A. (2014). Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators, 46, 495–503. DOI: 10.1016/j.ecolind.2014.07.013

Tarasov, V.V. (2005). Dnipropetrovsk an Zaporozhie regions flora. Dnipropetrovsk University Press, Dnipropetrovsk (in Ukranian).

Tarasov, V.V. (2012). Dnipropetrovsk an Zaporozhie regions flora. Second ed. Lira, Dnipropetrovsk (in Ukranian).

Tichý, L., Hájek, M., & Zelený, D. (2010). Imputation of environmental variables for vegetation plots based on compositional similarity. J Veg Sci, 21(1), 88–95.

Tsyganov, D.N. (1983). Phytoindication of ecological factors in the subzone of mixed coniferous–broad–leafed forests. Moscow: Nauka.

Tuomisto, H. (2011). Commentary: Do we have a consistent terminology for species diversity? Yes, if we choose to use it. Oecologia, 167, 903–911.

Van Dobben, H. F., ter Braak, C. J. F., & Dirkse, G. M. (1999). Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. For Ecol Manage, 114(1), 83–95.

Visotsky, G. N. (1960). About hydroclimatic value of the forest for the Russia. Selected whritings. Moscow: Academy press (in Russian).

Wagner, M., Kahmen, A., Schlumprecht, H., Audorff, V., Perner, J., Buchmann, N., & Weisser, W. W. (2007). Prediction of herbage yield in grassland: How well do Ellenberg N‐values perform? Appl Veg Sci, 10(1), 15–24.

Wamelink, G. W. W., Joosten, V., Dobben, H. V., & Berendse, F. (2002). Validity of Ellenberg indicator values judged from physico‐chemical field measurements. J Veg Sci, 13(2), 269–278.

Weslien, J., Djupström, L. B., Schroeder, M., Widenfalk, O. (2011). Long–term priority effects among insects and fungi colonizing decaying wood. Journal of Animal Ecology, 80, 1155–1162.

Whittaker, R. H. (1970). Communities and Ecosystems. Macmillan, London: Collier Macmillan.

Wittig, R., Ballach, H.J., Brandt, C.J. (1985). Increase of number of acid indicators in the herb layer of the Miller grass–beech forest of the Westphalian Bight. Angewandte Botanik, 59, 219–232.

Wittig, R., Durwen, K.–J. (1982). Ecological indicator–value spectra of spontaneous urban floras. In: Bornkamm, R., Lee, J.A. & Seaward, M.R.D. (eds.) Urban ecology; The second European ecological symposium; Berlin 8–12 September 1980, 23–31. Blackwell Scientific Publications, Oxford.

Zelený, D., & Schaffers, A. P. (2012). Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci, 23(3), 419–431.

Zhukov, A.V. (2015). Phytoindicator estamation of the multidimensional scaling dimantion of the plant Communities structure. Chornomors’k. bot. z., 11 (1), 84–98 (in Ukranian). doi:10.14255/2308–9628/15.111/8.

Zhukov, O.V. (2009). Ecomorphological Analysis of Soil Animal consortia. Dnepropetrovsk: Svidler A.L.

Zhukov, A. V. (2006). Hierarchy organisation and diversity of the soil animal community of the floodplain. Issues of steppe forestry and forest eclamation of soils, 10(35), 170–184 (in Russian).

Zhukov, A. V., Kunah, O. N., Zadorozhnaya, G.A., Andrusevich, E. V. (2013). Hierarchy of ecological diversity of industrial soil plants. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 9 (4), 37–47 (in Russian).

Zhukov, A. V., Shatalin, D.B. (2016). Hygrotope and trophotope of the steppe pridniprovie biogeoceonosis as determinants of the earthworms (Lumbricidae) communities β–diversity. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), 129–157.

Zhukov, A., Zadorozhnaya, G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278.

Zhukov, A.V., Kunah, O.N., Novikova, V.A., Ganzha, D.S. (2016). Phyitoindicacion estimation of soil mesopedobionts communities catena and their ecomorphic organization. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (3), 91–117 (in Russian).

Zonneveld, I. S. (1984). Principles of bioindication. Ecological Indicators for the Assessment of the Quality of Air, Water, Soil, and Ecosystems (pp. 207–217). Springer Netherlands.




DOI: http://dx.doi.org/10.15421/2017_90

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138